Problem/Opportunity

- The Problem Environmental Contamination
- Our Solution
 - A way to measure subsurface gases, liquids, and solids <u>at</u> <u>subsurface conditions</u> (elevated temperature and pressure)
- What situation ("pain") will we solve?
 - Current sampling and analysis is labor intensive (\$\$\$) and significantly changes the sample by cooling and depressurizing
 - Time waiting on analysis (\$\$\$)
- Why is this a game-changing technology/process?
 - No sample collection and No sample preparation
 - Continuous monitoring of an extreme environment
 - See changes in down hole fluid chemistry prior and post injection/fracturing
- Why does the situation exist?
 - Current analysis technology is **NOT** amenable to harsh environments (Lab only)

Competing Technologies vs Ours

- Gas Chromatography-Mass Spectrometry
 - Gas phase only, Lab operations and conditions only
- Cavity Ring Down Spectroscopy
 - Gas phase only, few ruggedized models available
- Portable Raman
 - Solids only, few ruggedized models available
- Handheld LIBS
 - Solids only, limited sensitivity

Our Technology's Advantages

- Gas, liquid and solid phases
- Field operation
- Rugged enough for downhole conditions
- High sensitivity
- Lower price and operating costs

Industry Partners, Customer Research

Core Markets:

• Oil & gas exploration companies, landowners, regulatory agencies, and municipalities (e.g., water treatment)

Other Potential Customers

 Industries that need to monitor their waste/produced water and/or environmental impacts (e.g., power generation, cement and steel manufacturing, mining)

Market Information

- Water Quality Monitoring Equipment Market is projected to reach \$5 Billion by 2023 expanding at a CAGR of 5.02%.
- Global Environmental Monitoring Market is forecast to reach \$19.6 Billion by 2021
- Global Market for Advanced Exploration and Downhole Technology is set to reach \$233 Billion by 2021

Commercialization Plan

- **Customers would include:** Regulatory Agencies, Exploration Companies, Municipalities, Land Owners, REE refineries
- Adoption drivers
 - Regulatory drivers/Mandatory monitoring prior and post activity
 - Ease of use, low cost, high data quality
- Key tests and trials
 - Prototype validated in lab; TRL 6-7
 - Fieldable prototype under construction
- Estimated price of product
 - Will depend on number of sensor units
 - 8 sensor unit system < \$100k

Intellectual property status

- U.S. Patent 9,548,585 2017
- U.S. Patent 9,297,696 2016
- U.S. Patent 8,786,840 2014

What we need at this point

S. DEPARTMENT OF

 Currently seeking a licensing/commercialization partner who has the ability to manufacture and market this product from field validation through customer delivery.

Current Prototype

Side view

Front view

Vision Statement

- Our Technology Will:
 - Allow industrial customers to comply with environmental regulations
 - Allow customers to identify problems early, allowing for a rapid response and lower mitigation costs
 - Protect the environment
 - Safeguard society

<u>Everybody</u> Loves Clean Air, Water, and Soil

