Catalytic Conversion of CO₂ into High Value Chemicals and Fuels

Daniel Haynes Reaction Engineering Team Energy Conversion Engineering Directorate NETL

6th Annual TransTech Energy Business Development Conference October 24th-25th 2017

Solutions for Today | Options for Tomorrow

• EPA Regulations on CO₂ emissions has

S. DEPARTMENT OF

eia-shale-gas-boosting-global-natural-gas-production-growth/ istry.com/2014/10/u-s-manufacturing-exports-surging-due-to-

2

Problem/DEFICIENCY/Need

- Recent fuel resource availability and regulatory actions provide unique opportunity for *Chemicals* production
 - Shale gas revolution has led to cheap fossil fuel resources e.g. NG, coal, and biomass
 - Market for these fuels to be monetized into value added chemicals
 - created a market for CO, as a feedstock!

U.S. Chemical Industry Global Cost Advantage

Relative Position of U.S. (2005-2013) (Petrochemical Production Costs)

"The shale gas revolution has enabled the US to move from a high-cost producer of key petrochemicals, to being the world's second lowest cost producer."

Ideal Solution

NATIONAL ENERGY TECHNOLOGY LABORATORY

Improved catalyst technology is required to convert CO₂ or syngas into fuels

Chemical Production requires

- A catalyst to convert CO₂/CO with H₂ into value added chemicals
 - Thermally Stability
 - Flexible composition to tailor activity
 - Control carbon formation

Electrochemical CO₂ Conversion requires

- Small and positive applied voltage
- Resistant to undesirable side reactions
- Material stability during electrochemical operations in the solution phase

Current/Conventional Approaches

- Traditional hydrogenation catalysts are the problem!
- Consist of metal deposited on high surface area support (Rh/Al₂O₃)
 - High dispersion of the metal
 - Readily sinters when exposed to high temperatures
 - Leads to loss in active surface area
 - Decoupling of active phase and promoters
 - Sintering/activity loss is irreversible
 - Carbon formation covers active sites

Current/Conventional Approaches

Issues with current CO₂ electrocatalysts

Known catalysts are inefficient

- * Large amounts of energy required to convert CO₂ to high value products
- * CO₂ conversion rate needs improvement
- * Poor selectivity broad product distribution

NETL Approach

- Mixed metal oxide catalysts for hydrogenation (e.g. pyrochlore, perovskite)
 - Crystalline materials with at least two different cations dispersed in an oxide framework
 - Thermally stable
 - Easily tailored composition to achieve a desired selectivity
- Organometallic Cluster Catalyst for CO₂ conversion
 - Small (nanometer size) metal cluster
 - Stable at reaction conditions
 - Contains reaction sites that facilitate the conversion process

How it Works

• Advantages of mixed metal oxides:

- Active metal can be substituted <u>into</u> structure to stabilize small particles
- Ratio (R) of supported to substituted active metal to control the selectivity
 - Low ratio produces alcohols
 - High ratio produces hydrocarbons

- Nanoparticle catalyst: Unprecedented catalytic performance
 - 100 % selective and efficient
 - Most effective CO₂ catalyst ever reported

Kaufmann et al, J. Am. Chem. Soc 134, 10237 (2012)

Applications

• Target markets for the Mixed-Oxide catalysts and electrocatalysts are large chemical companies

Major players are:

- BASF SE
- Air Liquide SA
- Sasol Ltd
- The Linde Group
- Their competition defines the competitive landscape of the global syngas and derivatives market

Market Opportunity

- Adoption of technology by large chemical company could lead to significant sales!!
 - North American catalyst market for chemicals production was ~3 billion USD in 2013!
 - Demand for fossil fuel derivatives is promoting future demand of catalysts

Consumption of syngas and derivatives expected to grow from 115,000 MWth in 2015 to 256,600 MWth in 2024- **9.4% CAGR**

- **NATIONAL** ENERGY TECHNOLOGY LABORATORY

North America Catalyst Market Volume, By Application, 2013 - 2024 (Kilo Tons)

Value Proposition

 Successful implementation leads to monetizing CO₂, NG, coal and biomass through value added chemicals

Benefits Include

- Less imported fuels and chemicals
- Decrease in CO₂ emissions through utilization
- Large potential market for catalysts- <u>\$3 billion</u>
 - Significant Sales!!
- Projected market growth rate of 9.4% CAGR to 2024

¹ Global Formic Acid Market: 0.5 M Ton (\$750 M)

Global Syngas and Derivatives Market By End-user, 2015 (MWth)

ΔΤΙΟΝΔΙ

HNOLOGY

Current Status/Accomplishments

NATIONAL ERG TECHNOLOGY ABORATORY

- Both Technologies have generated IP and related publications

 - Berry *et al.* US 9150476 for alcohol synthesis Berry *et al.* US 9586449 for hydrocarbon synthesis
 - Kauffman, et al. US 9139920
 - Kauffman, Alfonso et al. J. Am Chem. Soc. 134, 10237 (2012)
 - Alfonso, Kauffman and Matranga, J. Chem. Phys. 144, 184705 (2016) – 2016 Editors Choice Award Abdelsayeed et al. Catal. Today 207 (2013) 65
 - (alcohol'synthesis using pyrochlores)
- Both technologies have shown feasibility in proof of concept studies
 - Level of commercial development- Lab Scale
 - Mixed metal oxide proven for alcohol synthesis
 - Evaluated a Rh- based pyrochlore oxide for lab-scale testing
 - Proved to be selective to EtOH and PrOH
 - Electrocatalyst-Catalyst, reactor and electrode scaled over 100 times
 - Able to produce CO yields ~ 15,000 L/g-h
 - Exhibited stable on/off cycling under ambient and general lab-based testing

Electrocatalytic conversion of CO₂

Test Results

Higher alcohol synthesis using pyrochlores

- Technology currently only demonstrated on lab scales
 - Next steps for mixed oxide catalysts:
 - Further formulate, characterize, and test mixed oxides to develop catalyst for specific value added products
 - Test in a scaled-up reactor system
 - <u>Next steps for the electrocatalyst</u>
 - Need to evaluate a larger prototype electrode system
 - Each technology is looking for a CRADA or License partner!

Summary - Technology Recap

Revisit:

Problem: Deactivation and selectivity issues with current catalyst technology

- NETL proposes:
 - Mixed oxides as catalyst for chemical synthesis from syngas
 - Organometallic electrocatalyst for the conversion of CO₂ into CO.
- Improved activity and selectivity compared to traditional materials
- Value proposition- Catalyst market for chemicals production is large \$3 billion
 - Has a 9.4% projected CAGR up to 2024
- Next steps are to develop CRADA or Licensing agreement with partner

Catalyst Stability is an issue!

Mixed Metal Oxide

Organometallic Electrocatalyst List of what the Technology Offers:

- Improved stability
- Tunability (mixed oxides)
- High efficiency (electrocatalyst)

Value Proposition or Competitive Advantages:

- Improved selectivity & stability
- Industrial catalyst market is large- \$3 billion
- 9.4% CAGR

Envisioned Required Next Steps:

- Formulation development, characterization, testing for mixed metal oxides
- Further scale-up for electrocatalyst
- Develop CRADA or licensing

agreement

Thank You

Mixed Metal Oxide development Team at NETL

- Dushyant Shekhwat, Team Leader
- Dan Haynes, Research Engineer
- Mark Smith, Research Engineer
- Victor Abdelsayeed, Contractor Research Engineer
- David Berry, Associate Director

• NETL Partnership Options

- Licenses
- Cooperative Research and Development Agreements
- Contributed Funds Agreements
- Technology Transfer Office contact information
 - Jessica Lamp, Tech Transfer Program Manager

essica.Lamp@NETL.DOE.GOV 412-386-7417

